If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-20x-56=0
a = 3; b = -20; c = -56;
Δ = b2-4ac
Δ = -202-4·3·(-56)
Δ = 1072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1072}=\sqrt{16*67}=\sqrt{16}*\sqrt{67}=4\sqrt{67}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{67}}{2*3}=\frac{20-4\sqrt{67}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{67}}{2*3}=\frac{20+4\sqrt{67}}{6} $
| 1/2x-1=(-2x+1,5) | | x-2=2x+6x-9 | | x²+5=2x²+1 | | 10x-16=3x+47 | | x^2+5=2x^2+1 | | -4x+19=-2x+23 | | X+10+x+x-10=180°- | | 9x-1=3x=143 | | 4f−4=44f−4=4 | | 4(x–2)=8 | | r/10=-11 | | 4(x–5)=3(x–4) | | 16•3x=12x | | 7a+10=20+2a | | 35=45n;10,11,12 | | x+(x*18/100)=14160 | | -13m=117 | | 8/x=5.6 | | 36+5x=-3x | | x+(x*18/100)=11800 | | y*y*(1/2y)*(1/2y)=360 | | (x*18/100)=11800 | | F(-1)=2n | | x*x*1/2x*1/2x=360 | | -14=-2b | | F(-2)=2n | | 2b+9 = 31 | | X/3+n/5=5 | | X=2x4/7 | | X=(5-(n/5))3 | | 360/x=15/900 | | 15/x=360/900 |